Control of peripheral light-harvesting complex synthesis by a bacteriophytochrome in the aerobic photosynthetic bacterium Bradyrhizobium strain BTAi1.
نویسندگان
چکیده
The recent sequence analysis of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain BTAi1 revealed the unexpected presence of a pucBA operon encoding the apoproteins of peripheral light-harvesting (LH) complexes. This pucBA operon is found close to a bacteriophytochrome gene (BphP3(B BTAi1)) and a two-component transcriptional regulator gene (TF(BTAi1) gene). In this study, we show that BphP3(B BTAi1) acts as a bona fide bacteriophytochrome and controls, according to light conditions, the expression of the pucBA operon found in its vicinity. This light regulatory pathway is very similar to the one previously described for chromo-BphP4(Rp) in Rhodopseudomonas palustris and conducts the synthesis of a peripheral LH complex. This LH complex presents a single absorption band at low temperature, centered at 803 nm. Fluorescence emission analysis of intact cells indicates that this peripheral LH complex does not act as an efficient light antenna. One putative function of this LH complex could be to evacuate excess light energy in order to protect Bradyrhizobium strain BTAi1, an aerobic anoxygenic photosynthetic bacterium, against photooxidative damage during photosynthesis.
منابع مشابه
Evolution of a bacteriophytochrome from light to redox sensor.
Bacteriophytochromes are red/far-red photoreceptors that bacteria use to mediate sensory responses to their light environment. Here, we show that the photosynthetic bacterium Rhodopseudomonas palustris has two distinct types of bacteriophytochrome-related protein (RpBphP4) depending upon the strain considered. The first type binds the chromophore biliverdin and acts as a light-sensitive kinase,...
متن کاملTwo distinct crt gene clusters for two different functional classes of carotenoid in Bradyrhizobium.
Aerobic photosynthetic bacteria possess the unusual characteristic of producing different classes of carotenoids. In this study, we demonstrate the presence of two distinct crt gene clusters involved in the synthesis of spirilloxanthin and canthaxanthin in a Bradyrhizobium strain. Each cluster contains the genes crtE, crtB, and crtI leading to the common precursor lycopene. We show that spirill...
متن کاملEngineering an E. coli Near-Infrared Light Sensor.
Optogenetics is a technology wherein researchers combine light and genetically engineered photoreceptors to control biological processes with unrivaled precision. Near-infrared (NIR) wavelengths (>700 nm) are desirable optogenetic inputs due to their low phototoxicity and spectral isolation from most photoproteins. The bacteriophytochrome photoreceptor 1 (BphP1), found in several purple photosy...
متن کاملAntenna mixing in photosynthetic membranes from Phaeospirillum molischianum.
We have investigated the adaptation of the light-harvesting system of the photosynthetic bacterium Phaeospirillum molischianum (DSM120) to very low light conditions. This strain is able to respond to changing light conditions by differentially modulating the expression of a family of puc operons that encode for peripheral light-harvesting complex (LH2) polypeptides. This modulation can result i...
متن کاملPhotosynthetic bradyrhizobia from Aeschynomene spp. are specific to stem-nodulated species and form a separate 16S ribosomal DNA restriction fragment length polymorphism group.
We obtained nine bacterial isolates from root or collar nodules of the non-stem-nodulated Aeschynomene species A. elaphroxylon, A. uniflora, or A. schimperi and 69 root or stem nodule isolates from the stem-nodulated Aeschynomene species A. afraspera, A. ciliata, A. indica, A. nilotica, A. sensitiva, and A. tambacoundensis from various places in Senegal. These isolates, together with 45 previou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 190 17 شماره
صفحات -
تاریخ انتشار 2008